BIC

Lecture 9: Probabilistic Method

Theorem 1 (Markov inequality). For a nonnegative random variable and a > 0, it holds:

$$\Pr(X \ge a) \le \frac{\mathbf{E}(X)}{a}$$
.

1: Prove Markov's inequality (fine if *X* has finitely many values)

$$E(X) = \sum_{i} P(X=i) i \stackrel{\text{\tiny l}}{=} \sum_{i \ge a} P(X=i) a = d \cdot P(X \ge a)$$

Theorem 2 (Erdős, 1959). For every pair of integers g and k, there exists a graph G with girth g(G) > g and chromatic number $\chi(G) > k$.

Let us use the following notation for the falling factorial

$$(n)_i := \binom{n}{i} i! = n(n-1)(n-2)\cdots(n-i+1).$$

Proof. Proof idea: Take a random graph $\mathcal{G}(n,p)$. Show it has few short cycles and small independent set. Small independent set means high chromatic number. Remove a vertex for each short cycle such that at least 1/2 of the vertices remain. Now no short cycles and still small independent set.

Let $0 < \beta < 1/g$ and let G be from $\mathcal{G}(n,p)$, where $p = n^{\beta-1} = \frac{1}{p^{\beta-1}}$. Let X be the random variable that counts the number of cycles of length $\leq g$. $\mathcal{K} \geq \mathcal{M}$

2: Show that $\mathbf{E}(X) < n/4$ for sufficiently large *n*.

3: Use Markov inequality to find an upper bound is at least n/2.

probability that the number of cycles of length
$$\leq q$$

Now, let $\gamma = \lceil \frac{3}{p} \ln n \rceil$.

4: Show that $Pr(\alpha(G) \ge \gamma) < \frac{1}{2}$ for sufficiently large *n*. Actually, it goes to zero as $n \to \infty$. Hint: $(1-p)^x \le e^{-px}$ for any x > 0.

$$P_{r}(d(n) \ge g) \le {\binom{n}{r}} (1-p) < n \quad \overline{2}^{p} \frac{r(y_{n})}{2} =$$

$$= n \quad 2^{r} \frac{(\frac{1}{r} + h_{n})}{2} \frac{(y_{-1})}{2} = n \quad n \quad \frac{g}{2} \frac{r(y_{-1})}{2} = \frac{g}{2} \frac{r(y_{-1})}{2} \frac{r(y_{-1})}{2} = \frac{g}{2} \frac{r(y_{-1})}{2} \frac{r(y_{-1})}{2} = \frac{g}{2} \frac{r(y_{-1})}{2} \frac{r(y_{-1})}{2} = \frac{g}{2} \frac{r(y_{-1})}{2} \frac{r(y_{-1})}{2$$

Now, let n be large enough such that above two bounds are < 1/2. Then, there exists a graph G with less than n/2 cycles of length $\leq g$ and with independent set smaller than $3n^{1-\beta} \ln n$. From each cycle of length $\leq g$ of G remove a vertex, this way we obtain a graph G' on at least n/2 vertices, whose girth is > g and with independent number $\alpha(G') \leq \alpha(G)$.

5: Calculate the chromatic number of G' and finish the proof.

$$\mathcal{X}_{n}(A') \stackrel{*}{=} \frac{1}{d(A')} \stackrel{*}{=} \frac{4}{3u'^{3}hn} = \frac{n^{3}}{6hn} \int \frac{\pi e}{Asn > n}$$

TAKE IN LARLE ENOVAN JOSATISPI $\frac{n^{3}}{6hn} > K$

1 Lovász Local Lemma

Let A_i be bad events and we want to avoid all of them.

In practice the basic method is often not useful as the sum $\sum \Pr(A_i)$ is very often bigger than 1. In general

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) \le \sum_i \Pr(A_i),$$

which can easily be more than 1.

6: Assume that all A_1, \ldots, A_n are independent and nontrivial, i.e. $0 < \Pr(A_i) < 1$. Improve the upper bound in the union of A_i by considering \bar{A}_i .

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = |-P(\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n})$$
$$= |-P(\overline{P_1}) \cdot P(\overline{A_1}) \dots P(\overline{A_n}) < |$$

Lovász Local Lemma extends this when events are mostly independent.

An event A is **mutually independent** from the events B_1, \ldots, B_k , if for each subset $J \subseteq \{1, 2, \ldots, k\}$, it holds:

$$\Pr(A \cap \bigcap_{j \in J} B_j) = \Pr(A) \Pr(\bigcap_{j \in J} B_j).$$

Note: It is stronger than A being independent with each B_i individually!

Theorem 3 (Symmetric Lovász Local Lemma). Let A_1, A_2, \ldots, A_n be events for which $Pr(A_i) \leq p$. Suppose that each A_i mutually independent of a set of all A_j 's but except of at most other d of them. If

$$ep(d+1) \le 1$$

 $\Pr\left(\bigcap_{i=1}^{n} \bar{A}_{i}\right) > 0.$

then

A variation of this result replaces the assumption $ep(d+1) \leq 1$ by $4pd \leq 1$. Note that n does not matter in the lemma.

A coloring of a hypergraph is proper if no edge is monochromatic.

Theorem 4. Let \mathcal{H} be a hypergraph such that every edge contains at least k vertices and it is incident with at most d other edges. If $e(d+1) \leq 2^{k-1}$, then \mathcal{H} 2-colorable.

Proof. Color the vertices of \mathcal{H} uniformly and independently by red and blue.

7: Finish the proO

RANDONLY CONSEACH VERTOR

©€\$© by Riste Škrekovski and Bernard Lidický

 $P(A \gamma B) = P(A), P(B)$

As a particular case of the above theorem, observe that the assumption is satisfied, if every edge is incident with at most 2^{k-3} others.

Theorem 5. Let G be a graph and L list assignment with $|L(v)| \ge \ell > 0$ colors to every vertex v. Suppose that each color c appears in at most $\ell/8$ lists of the neighbours of each vertex. Then, G is L-colorable.

Proof. Color each vertex v of G independently and uniformly with a color from L(v). Thus each of its colors is chosen with probability $1/\ell$. For every edge e = uv of G and every color $c \in L(u) \cap L(v)$, let $A_{c,e}$ be the event that both u and v are colored by c.

8: Finish the proof.

Let A_1, \ldots, A_n be events in some probability space. A directed graph G with vertices $\{1, \ldots, n\}$ is called a *dependency* graph, if each event A_i is mutually independent of all events A_j for which there is no oriented edge (i, j) in G. Notice that the dependency graph is not necessarily uniquely determined.

Theorem 6 (Asymmetric Lovász Local Lemma). Let be A_1, \ldots, A_n be events and D = (V, E) dependency graph of these events. For each $i \in \{1, \ldots, n\}$, let $x_i \in [0, 1)$ be real numbers for which

$$\Pr(A_i) \le x_i \prod_{ij \in E} (1 - x_j)$$

Then,

$$\Pr(\bar{A}_1 \cap \bar{A}_2 \cap \dots \cap \bar{A}_n) \ge \prod_{i=1}^n (1-x_i) > 0.$$

9: Prove the symmetric version using the asymmetric version. Hint: Pick $x_i = \frac{1}{d+1} < 1$