Lecture 9: Probabilistic Method

Theorem 1 (Markov inequality). For a nonnegative random variable and $a>0$, it holds:

$$
\operatorname{Pr}(X \geq a) \leq \frac{\mathbf{E}(X)}{a}
$$

1: Prove Markov's inequality (fine if X has finitely many values)

$$
E(X)=\sum_{i} P(X=i) i \geq \sum_{i \geq d} P(X=i) a=a \cdot P(X \geq a)
$$

Theorem 2 (Erdős, 1959). For every pair of integers g and k, there exists a graph G with girth $g(G)>g$ and chromatic number $\chi(G)>k$.

Let us use the following notation for the falling factorial

$$
(n)_{i}:=\binom{n}{i} i!=n(n-1)(n-2) \cdots(n-i+1) .
$$

Proof. Proof idea: Take a random graph $\mathcal{G}(n, p)$. Show it has few short cycles and small independent set. Small independent set means high chromatic number. Remove a vertex for each short cycle such that at least $1 / 2$ of the vertices remain. Now no short cycles and still small independent set.
Let $0<\beta<1 / g$ and let G be from $\mathcal{G}(n, p)$, where $p=n^{\beta-1}=\frac{1}{w^{1-3}} \quad$ IF α SMALL \quad Bin
Let X be the random variable that counts the number of cycles of length $\leq g$.

$$
x \geq \frac{n}{\alpha}
$$

2: Show that $\mathbf{E}(X)<n / 4$ for sufficiently large n.

3: Use Markov inequality to find an upper bound probability that the number of cycles of length $\leq g$ is at least $n / 2$.

$$
P\left(x \geq \frac{4}{2}\right)<\frac{\frac{7}{4}}{4 / 2}=\frac{1}{2}
$$

Now, let $\gamma=\left\lceil\frac{3}{p} \ln n\right\rceil$.
4: Show that $\operatorname{Pr}(\alpha(G) \geq \gamma)<\frac{1}{2}$ for sufficiently large n. Actually, it goes to zero as $n \rightarrow \infty$. Hint: $(1-p)^{x} \leq e^{-p x}$ for any $x>0$.

$$
\begin{aligned}
& \operatorname{Pr}(\alpha(h) \geq \gamma) \leq\binom{ n}{\gamma}(1-p)^{(\gamma)}<n^{\gamma} e^{-p^{\gamma}(\gamma-1) / 2} \\
& =n^{2} e^{-x \cdot\left(\frac{3}{x} h n\right)(\gamma-1) / 2}=h^{\gamma-3(\gamma-1) / 2}=h^{-\frac{\nu}{2}+3 / 2} \rightarrow n^{0} \rightarrow 0 \\
& \begin{array}{l}
\text { As } n \rightarrow \\
\angle 1 / 2 \text { FORMaLS } \rightarrow
\end{array}
\end{aligned}
$$

Now, let n be large enough such that above two bounds are $<1 / 2$. Then, there exists a graph G with less than $n / 2$ cycles of length $\leq g$ and with independent set smaller than $3 n^{1-\beta} \ln n$. From each cycle of length $\leq g$ of G remove a vertex, this way we obtain a graph G^{\prime} on at least $n / 2$ vertices, whose girth is $>g$ and with independent number $\alpha\left(G^{\prime}\right) \leq \alpha(G)$.

5: Calculate the chromatic number of G^{\prime} and finish the proof.

$$
\begin{aligned}
& x\left(\alpha^{\prime}\right) \geq \frac{|V(\alpha)|}{\alpha\left(k^{\prime}\right)}=\frac{\frac{n}{2}}{3 n^{-3} \ln }=\frac{n^{3}}{6 \ln n}-\operatorname{mos} n \Rightarrow 0 \\
& \text { TAVE n MQ RES ENOUAn TOSATSP } \frac{n^{3}}{6 \ln n}>K
\end{aligned}
$$

1 Lovász Local Lemma

Let A_{i} be bad events and we want to avoid all of them.
In practice the basic method is often not useful as the sum $\sum \operatorname{Pr}\left(A_{i}\right)$ is very often bigger than 1 .
In general

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) \leq \sum_{i} \operatorname{Pr}\left(A_{i}\right)
$$

which can easily be more than 1.
6: Assume that all A_{1}, \ldots, A_{n} are independent and nontrivial, i.e. $0<\operatorname{Pr}\left(A_{i}\right)<1$. Improve the upper bound in the union of A_{i} by considering \bar{A}_{i}.

$$
\begin{aligned}
& P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=1-P\left(\overline{A_{1}} \cap \overline{A_{2}} \cap \ldots \overline{A_{n}}\right) \\
&=1-P\left(\overline{P_{1}}\right) \cdot P\left(\overline{A_{2}}\right) \ldots P\left(\overline{A_{4}}\right)<1 \\
& \text { Lovász Local Lemma extends this when events are mostly independent. } P\left(A_{\cap} B\right)=P(A), P(B)
\end{aligned}
$$

An event A is mutually independent from the events B_{1}, \ldots, B_{k}, if for each subset $J \subseteq\{1,2, \ldots, k\}$, it holds:

$$
\operatorname{Pr}\left(A \cap \bigcap_{j \in J} B_{j}\right)=\operatorname{Pr}(A) \operatorname{Pr}\left(\bigcap_{j \in J} B_{j}\right)
$$

Note: It is stronger than A being independent with each B_{i} individually!
Theorem 3 (Symmetric Lovász Local Lemma). Let $A_{1}, A_{2}, \ldots, A_{n}$ be events for which $\operatorname{Pr}\left(A_{i}\right) \leq p$. Suppose that each A_{i} mutually independent of a set of all A_{j} 's but except of at most other d of them. If

$$
e p(d+1) \leq 1
$$

then

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{n} \bar{A}_{i}\right)>0
$$

A variation of this result replaces the assumption $e p(d+1) \leq 1$ by $4 p d \leq 1$. Note that n does not matter in the lemma.
A coloring of a hypergraph is proper if no edge is monochromatic.

Theorem 4. Let \mathcal{H} be a hypergraph such that every edge contains at least k vertices and it is incident with at most d other edges. If $e(d+1) \leq 2^{k-1}$, then \mathcal{H} 2-colorable.

Proof. Color the vertices of \mathcal{H} uniformly and independently by red and blue.

7: Finish the proof

RaNd only cold eahal vertex

Al .. EDAE e is Monochromatic

$$
P\left(A_{e}\right) \leq 2 \cdot\left(\frac{1}{2}\right)^{k}=2^{1-k}
$$

$$
l \cdot P(l+1) \leq 1^{(2)}
$$

Al is huttindependen Oral $\Delta \pi \ldots d$ angel $\quad l . p(d+1) \leq 2^{k-1} \cdot 2^{1-1 k}=1$
 celestas

$$
\Rightarrow \exists \text { COMORIN WITT NO MONOCHROMATIC EDE }
$$

As a particular case of the above theorem, observe that the assumption is satisfied, if every edge is incident with at most 2^{k-3} others.

Theorem 5. Let G be a graph and L list assignment with $|L(v)| \geq \ell>0$ colors to every vertex v. Suppose that each color c appears in at most $\ell / 8$ lists of the neigbhours of each vertex. Then, G is L-colorable.

Proof. Color each vertex v of G independently and uniformrly with a color from $L(v)$. Thus each of its colors is chosen with probability $1 / \ell$. For every edge $e=u v$ of G and every color $c \in L(u) \cap L(v)$, let $A_{c, e}$ be the event that both u and v are colored by c.

8: Finish the proof.

$$
\begin{aligned}
& P\left(A_{a l}\right)=\frac{1}{l} \cdot \frac{1}{l}=\frac{1}{l^{2}} \\
& \text { Ail.. How mam "Deasmer k"? } \\
& A_{c}, l \\
& \text { U, r }
\end{aligned}
$$

$$
\begin{aligned}
& c=e^{\prime} \\
& \frac{e l}{8} \cdot 2=\frac{e^{2}}{4}=d \\
& \text { 4.p. } d=4 \cdot \frac{1}{e^{2}} \cdot \frac{e^{2}}{4}=1 \\
& \Rightarrow 3 \text { coconimauith NO MAD DVENT } \Rightarrow \text { IT IS PDorgir. }
\end{aligned}
$$

Let A_{1}, \ldots, A_{n} be events in some probability space. A directed graph G with vertices $\{1, \ldots, n\}$ is called a dependency graph, if each event A_{i} is mutually independent of all events A_{j} for which there is no oriented edge (i, j) in G. Notice that the dependency graph is not necessarily uniquely determined.

Theorem 6 (Asymmetric Lovász Local Lemma). Let be A_{1}, \ldots, A_{n} be events and $D=(V, E)$ dependency graph of these events. For each $i \in\{1, \ldots, n\}$, let $x_{i} \in[0,1)$ be real numbers for which

$$
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{i j \in E}\left(1-x_{j}\right) .
$$

Then,

$$
\operatorname{Pr}\left(\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)>0 .
$$

9: Prove the symmetric version using the asymmetric version. Hint: Pick $x_{i}=\frac{1}{d+1}<1$

