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Lecture 9: Probabilistic Method
Theorem 1 (Markov inequality). For a nonnegative random variable and a > 0, it holds:

E(X)

Pr(X >a) <
a

1: Prove Markov’s inequality (fine if X has finitely many values)
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Theorem 2 (Erdés, 1959). For every pair of integers g and k, there exists a graph G with girth g(G) > g and
chromatic number x(G) > k.

Let us use the following notation for the falling factorial

(n); := <’?>z’!:n(n—1)(n—2)-..(n—i+1).
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Proof. Proof idea: Take a random graph G(n,p). Show it has few short cycles and small independent set. Small
independent set means high chromatic number. Remove a vertex for each short cycle such that at least 1/2 of
the vertices remain. Now no short cycles and still small independent set.

l
Let 0 < 8 < 1/g and let G be from G(n,p), where p = nf~1. = “;(_:G [FOLWLL LN
Let X be the random variable that counts the number of cycles of length < g. (}C > ﬂ
2: Show that E(X) < n/ 4 for sufficiently large n. A
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3: Use Markov inequality to find an upper bound probability that the number of cycles of length < g

is at least n/2.
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Now, let v = [% Inn].
4: Show that Pr(a(G) > ) < % for sufficiently large n. Actually, it goes to zero as n — oo.
Hint: (1 —p)* < e P* for any x > 0.
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Now, let n be large enough such that above two bounds are < 1/2. Then, there exists a graph G with less
than n/2 cycles of length < g and with independent set smaller than 3n'~?Inn. From each cycle of length
< g of G remove a vertex, this way we obtain a graph G’ on at least n/2 vertices, whose girth is > g and with
independent number o(G’) < a(Q).

5: Calculate the chromatic number of G’ and finish the proof.
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1 Lovasz Local Lemma

Let A; be bad events and we want to avoid all of them.
In practice the basic method is often not useful as the sum ) Pr(A;) is very often bigger than 1.

In general

Pr(A;UAy U=~ UA,) <> Pr(4),

which can easily be more than 1.

6: Assume that all A,..., A, are independent and nontrivial, i.e. 0 < Pr(4;) < 1. Improve the upper bound
in the union of A; by considering A;.
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An event A is mutually independent from the events By, ..., By, if for each subset J C {1,2,...,k}, it holds:

Pr(AN () B)j) = Pr(A)Pr([)] B)).
jeJ jeJ

Lovész Local Lemma extends this when events are mostly independent.

Note: It is stronger than A being independent with each B; individually!

Theorem 3 (Symmetric Lovész Local Lemma). Let Ay, Ag, ..., A, be events for which Pr(A;) < p. Suppose
that each A; mutually independent of a set of all A;’s but except of at most other d of them. If

ep(d+1) <1

then

A variation of this result replaces the assumption ep(d + 1) < 1 by 4pd < 1. Note that 7 does not matter in
the lemma. L
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A coloring of a hypergraph is proper if no edge is monochromatic. @/ @ N j @

Theorem 4. Let H be a hypergraph such that every edge contains at least k vertices and it is incident with at
most d other edges. If e(d + 1) < 281 then H 2-colorable.

<72\

Proof. Color the vertices of H uniformly and independently by red an
7: Finish the prog
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As a particular case of the above theorem, observe that the assumption is satisfied, if every edge is incident
with at most 2¥~3 others.

Theorem 5. Let G be a graph and L list assignment with |L(v)| > £ > 0 colors to every vertex v. Suppose that
each color ¢ appears in at most £/8 lists of the neigbhours of each vertex. Then, G is L-colorable.

Proof. Color each vertex v of G independently and uniformrly with a color from L(v). Thus each of its colors is
chosen with probability 1/¢. For every edge e = uv of G and every color ¢ € L(u) N L(v), let A.. be the event

that both d lored by c.
at both v and v are colored by ¢ -

8: Finish the proof. S L“’\) S
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Let Aj,..., A, be events in some probability space. A directed graph G with vertices {1,...,n} is called a
dependency graph, if each event A; is mutually independent of all events A; for which there is no oriented edge
(7,7) in G. Notice that the dependency graph is not necessarily uniquely determined.

Theorem 6 (Asymmetric Lovész Local Lemma). Let be Ay, ..., A, be events and D = (V,E) dependency
graph of these events. For eachi € {1,...,n}, let z; € [0,1) be real numbers for which

Pr(A;) <z [ (1— ).

ijCE
Then,
Pr(A;nA;n---nAy) > [ —2i) > 0.
=1

9: Prove the symmetric version using the asymmetric version. Hint: Pick z; = d—}rl <1
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